A New Hybrid Evolutionary Multiobjective Algorithm Guided by Descent Directions
نویسندگان
چکیده
Hybridization of local search based algorithms with evolutionary algorithms is still an under-explored research area in multiobjective optimization. In this paper, we propose a new multiobjective algorithm based on a local search method. The main idea is to generate new non-dominated solutions by adding a linear combination of descent directions of the objective functions to a parent solution . Additionally, a strategy based on subpopulations is implemented to avoid the direct computation of descent directions for the entire population. The evaluation of the proposed algorithm is performed on a set of benchmark test problems allowing a comparison with the most representative state-of-the-art multiobjective algorithms. The results show that the proposed approach is highly competitive in terms of the quality of non-dominated solutions and robustness.
منابع مشابه
Generalized Multiobjective Evolutionary Algorithm Guided by Descent Directions
This paper proposes a generalized descent directions-guided multiobjective algorithm (DDMOA2). DDMOA2 uses the scalarizing fitness assignment in its parent and environmental selection procedures. The population consists of leader and non-leader individuals. Each individual in the population is represented by a tuple containing its genotype as well as the set of strategy parameters. The main nov...
متن کاملA new hybrid conjugate gradient algorithm for unconstrained optimization
In this paper, a new hybrid conjugate gradient algorithm is proposed for solving unconstrained optimization problems. This new method can generate sufficient descent directions unrelated to any line search. Moreover, the global convergence of the proposed method is proved under the Wolfe line search. Numerical experiments are also presented to show the efficiency of the proposed algorithm, espe...
متن کاملMultiobjective Imperialist Competitive Evolutionary Algorithm for Solving Nonlinear Constrained Programming Problems
Nonlinear constrained programing problem (NCPP) has been arisen in diverse range of sciences such as portfolio, economic management etc.. In this paper, a multiobjective imperialist competitive evolutionary algorithm for solving NCPP is proposed. Firstly, we transform the NCPP into a biobjective optimization problem. Secondly, in order to improve the diversity of evolution country swarm, and he...
متن کاملA Note on the Descent Property Theorem for the Hybrid Conjugate Gradient Algorithm CCOMB Proposed by Andrei
In [1] (Hybrid Conjugate Gradient Algorithm for Unconstrained Optimization J. Optimization. Theory Appl. 141 (2009) 249 - 264), an efficient hybrid conjugate gradient algorithm, the CCOMB algorithm is proposed for solving unconstrained optimization problems. However, the proof of Theorem 2.1 in [1] is incorrect due to an erroneous inequality which used to indicate the descent property for the s...
متن کاملUsing Gradient Based Information to Build Hybrid Multi - objective
Over the last decades evolutionary algorithms have become very popular to solve multiobjective optimization problems (MOPs). Several multi-objective evolutionary algorithms (MOEAs) have been developed to solve MOPs with successfull results. A feature of these algorithms is that they do not exploit concrete information, about continuity or differentiability of the objective functions of the prob...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Math. Model. Algorithms in OR
دوره 12 شماره
صفحات -
تاریخ انتشار 2013